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Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation
in microscopic theory
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We consider a nanoscale dipolar emittqguantum dot, atom, fluorescent molecule, or rare-earth i
nanometer proximity to a flat metal surface. There is strong interaction of this emitter with unscreened metal
electrons in the surface nanolayer that causes enhanced relaxation due to surface plasmon excitation and
Landau damping. To describe these phenomena, we developed analytical theory based on local random-phase
approximation. For the system considered, conventional theory based on metal as continuous dielectric fails
both qualitatively and quantitatively. Applications of the present theory and related phenomena are discussed.
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Recently, there has been explosive growth of nanosciendécation by stimulated emission of radiatidiSPASER,*?
and nanotechnology. Nanosystems possess unique properti@®’s constitute active medium, and a metal nanoparticle
different from those of macroscopic materials when characplays the role of laser resonant cavity. The radiationless
teristic lengths governing their propertigg.g., electron transfer of energy from QD’s to metal is the fundamental
mean-free path,,, the exciton Bohr radius, Debye radius process causing the stimulated emission of SPs that play the
ro, etc) become comparable to geometric sizes of the parrole of cavity photon modes for a conventional laser. The
ticles or distances between them. Then macroscopic descripresent Rapid communication will have direct application to
tion of nanostructured system may not be applicable even othe theory of SPASER.
the order of magnitude. Below we build theory for QD’s, though it is applicable to
In this Rapid Communication, we consider a dipole emit-any dipolar emitter. The enhancement of the radiationless
ter [semiconductor quantum dé®D), dye molecule, atom, energy transfer from a QD to the metal in its nanometer-scale
or rare-earth iohat a nanometer-scale distance from the sur{proximity occurs due to strong interaction of QD’s field with
face of a metal. We treat the metal microscopically in localunscreeneelectrons in a layer of deptty, at the metal sur-
random-phase approximatigibRPA). We found giant en- face. For nanosystems, characteristic sizistances from
hancement of the nonradiative decay of excitations in suclQD’s to metal surfaces or radii of nanopartidlese much
emitters due to Coulomb interaction with electrons in thesmaller tharl,, . In this case, description of metal in DMA is
metal. In a nanometer-scale proximity to metal, this enhancenot applicable. At the same time, we will not use an atomis-
ment is an order of magnitude greater than in the existingdic, ab initio theory sincea is much greater than the atomic
theory! 3 that treats the metal as dielectric medium. We callscale. We will employ LRPA, a microscopic approach based
such an approach, where the dielectric function possessesm random-phase approximatiéRPA),*® where the dielec-
temporal but not spatial dispersion, as dielectric medium aptric function e(w,k) possesses both the temporal apatial
proximation(DMA). dispersion, and dissipation is due to the Landau damfing.
Unique properties of QD’s make them attractive candi-Earlier, approaches based on Rf®ef. 15 and on dynamic
dates for various optical applications from optical amplifica-density-functional theory were developed for extremely
tion and lasing® to fluorescence taggirfgWhile some ap- small distancesa<r. In contrast, our theory is valid for
plications require high QD emission efficiencies, there is ahe intermediate scalé,=a=rp, which is of high impor-
number of applications, such as ultrafast optical switchingance for nanooptics.
and dynamic holographythat can benefit from fast nonra-  To reveal the physical meaning of LRPA vs DMA, we
diative deactivation of electronic excitations in QD’s. Intrin- begin with estimates of the relaxation rage(or lifetime 7
sic relaxation in QD’s is due to radiative decay which occurs=1/y) of a QD in the proximity of the metal surface. The
on time scales from subnanosecond to submicrosecond dgeneral expression foy for a dipolar system is
pending on composition, size, shape, temperature, etc. One
approach to enhancing the decay rates entails the use of in-
teractions of QD excitations with metals. As demonstrated y=
recently, the nanoscale proximity to a metal surface can
strongly effect the rates of both radiative and nonradiative A . ) o
relaxation of emitting specié€-°The metal nanoparticles Whered andE are the dipole moment and electric field op-
can also serve as nanoantennas spatially concentrating el&ators. From this expression, an estimate follows:
tromagnetic energy on the nanoscale and transferring it to
QD's with the possibility to coherently control the y~h " HE[?VIme(w,k), )
excitation®?
In the recently proposed effect of surface plasmon ampliwhereV is the metal volume occupied by fiekl

(E-d), (1)

>

0163-1829/2004/692)/1214034)/$22.50 69 121403-1 ©2004 The American Physical Society



RAPID COMMUNICATIONS

LARKIN, STOCKMAN, ACHERMANN, AND KLIMOV PHYSICAL REVIEW B 69, 121403R) (2004

In DMA, the electric field created by a QD is estimated as In LRPA, we consider electrons of the metal as a degen-
E~d/[|e(w)|a®], where dielectric functior(w) possesses erate electron plasma that possesses dissipation due to Lan-
only the temporal dispersiom, is the distance from the QD dau damping and whose dielectric function depends on both
to the surface, and~a>. Note that in the density-functional » andk (temporal and spatial dispersidh
theory (DFT) there is a nanometric shift of the electron den-
sity distribution with respect to the latti¢é. Thereforea 2 o  wtkvg
should be treated as the distance to¢teetronsurface. As- sl k)=1= K22 1 ko o ko’ ©
suming the transition frequenay to be small compared to UF F F
electron plasma frequend,, we obtain from the Drude where Q.= 47N.e?/m and complex function In{ is de-
formula: [e]?~Qg/ * and Ime~ Q2 y,/ w®, whereyyisthe  fined as Ing)=In|u|—i for u<0. This expression is identi-
relaxation rate for electrons in the metak,=vg/l;,, and cal to the corresponding result of RPAFork>|w|/vg, the
ve is the velocity at the Fermi surface. Substituting theseémaginary part ofe (w,k) is nonzero. For a spatially disper-

estimates into Eq(2), we obtain sive dielectric function, we should carefully reformulate the
boundary conditions for ballistic electrons at the surface of
1d%me 1 deow the metal. First, even at jeleum model electron density close

(3 to the surface varies smoothly with relaxation length ;
second effect is that reflection of ballistic electrons from the
o _ surface modifies its interaction with electric field. In our cal-
Considering LRPA, an external field penetrates a metaty|ations we ignore narrow region near the surface and sup-
mainly to a depth on order ob~vg/Q,. Inareal metatp  pose that locally the electron Fermi liquid everywhere has
is very small (p=1 nm), therefore the contributing wave the same properties as in the bulk metdle LRPA term
vectors k~1/rp, are large. For suchk, RPA vyields'**®  originates from the latter assumptjonWe will show that
Ime(w,k) = (3/2)mQ3w/ (kve)*~ Q2w r3/v}. Substituting variation of electron’s density close to the surface brings
this into Eq.(1) and taking into account that~rpa?, we  only small correction to our results. To take into account

hadlel? hadl,0F

obtain second effect we assume specular reflection of electron from
the surface. As was shown in Ref. 21 ideal specular reflection
1 d%rw implies that electrostatic problem with dielectric functig
YTz 202 (4) and given normal electric fiel&, (x,y,0) at this surface is
e

equivalent to the problem in infinite space

The ratio of the relaxation rates in these two approximations ~ _
[Egs.(3) and(4)]is v rpa! Yoma~ i /a~10%. The numeri- V(eVein) =2E.(xy,0) 8(2), @)
cal estimate is obtained for silver for visible light frequencies,,ygre @ine is the field potential in the metal and is the

where |, ~40 nmw and distancesa~1 nm relevant for oniocal dielectric function whose Fourier imagesiso k).
nanoscience. This estimate implies that the LRPA mechagte that Dirac delta in Eq7) emulates boundary condition
nism is dominant, and_the conventional DMA is not valid 5t the metal surface. Solution of EQ) yields the potential
even by order of magnitude. , __ distribution symmetric about the surface=0) with a dis-

A known .approach to optlcal properties of nanoparucles IScontinuity of normal electric field B, (x,y,0). Next, this
to renormalize the relaxation constant of electrons in a metaliecyric field should be found consistently with potential dis-

Ym— Ymtvi/R, whereR is the radius of a nanop_artic’ré. tribution outside of the metal, where it obeys the Laplace
This procedure emulates collisions of electrons with the surgqation with a dipolar singularity at point (Ca), In Fou-

faces. However, such an approach is not completely consis: . s .~
tent since it only modifies the temporal dispersion and nell€’_ space, , the sclnlutlon n_ metal |§ ¢in(k)
glects the spatial dispersion that is of principal importance= 2E(Kx.k))k “e(w,k) "%, where E(ky.ky) is two-
for nanoscale optical phenomena, as demonstrated by tifmensional (2D) Fourier transform ofE, (x,y,0) and k
above estimates. =[KkZ+kj+kZ]2 As result, the 2D Fourier transform of the
Quantitatively, we consider all sizes and distances to b@otential at the surface is

much less than light wavelength. Then quasielectrostatic
approximation is valid. For DMA, solving macroscopic ~ 1. * dk,
quasielectrostatic equations, from Efl), we get well- ‘PSUf(kX’kV”Z:O:;E(kX'ky)f_m ke (k) (8)
known result’ '

To find the solution in the region outside of the metal, we

1 Ime(w) |dy? first find it for a unit charge at point (0&). Then by varia-
Y=t gy R, (5)  tion over coordinates, we find the required dipolar field. This
le(w)+1]* a solution for a charge is
whered;, is the transition dipole element for the QD amgd PenK) =1 —2E (K, ,ky)+4ﬂ_[eikza+e—ikza]}k—2, 9)

is the rate of radiative relaxation in the presence of the metal
half space. We assume an isotropic QD and average over ttad the 2D Fourier transform of the external potential at the
directions ofd,,. surface has the form
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FIG. 1. Inverse surface dielectric functi@T(w,k,)’l (the real

and imaginary parjsplotted against parallel wave vectéy for
hwo=2 eV.

—EBky k) +ame (6T

®sur( Ky vky)|z=O: (k)2(+ ki)llz . (10
Equating Egs(8) and (10), we find
E(k)=4me " 1+e(wk) 117 (12)
coko=r| | L (12
e(w, =— —_ ,
k| S K2e(w,k)

wherek, = (ki + k)2
The inverse surface dielectric functiog(w,k,) ™%, is
shown in Fig. 1 foiw=2 eV. In the long wavelength limit,

k,<wlvg, from Eqg.(12) with logarithmic accuracy, we get

1 1 ikKivpw
e(wk) 1-(Qw)? 302
where constan€~0.8. Foro<(),, the integral of Eq(12)

Q
In| c—2
w

. (13
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FIG. 2. Relaxation ratey of QD at a distance from metal
surface as a function of transition energy. The distancea to the
surface are indicated at the corresponding curves. The computations
are made for a constamt;,=28x 10 8 esu, which corresponds
vo=10 sl athw=2 eV.

describes the macroscopic contribution and is in agreement
with Egs.(3) and(5). The second terms a4, is the result of
LRPA and originates from the Landau damping. It is domi-
nant fora<l,, ; its prelogarithmic factor agrees with the es-
timate of Eq.(4). The same dependence on the distance
(xa~*) was obtained in Ref. 22. However, the result of Ref.
22 does not contain the large logarithm and has an inaccurate
prefactor, w(kg Q) ~1, in contrast to oursvaQ;Z. This
stems from the fact that Ref. 22 incorrectly assumes that only
electrons from a surface layer of widthkz* interact with

the external field.

The metal not only causes radiationless relaxation, but
also affects(renormalizep the radiative decay rate. From
Egs. (5.159 and (5.160Q of Ref. 23, one can calculate the
radiative rate for a QD in the presence of metal half space

rapidly converges at the upper limit. Therefore, the result isonsidered as an ideal mirror that reasonably emulates noble

not significantly sensitive to largk, or small distancez
"‘rD .

From Egs.(9) and (11), the induced potential at point

(0,0a) is

=1 (> .
Pext(0,02)= _f [E(kr)_zweikra]eikradkr .
2 0
14

metals at not very high frequenciee €(,),

2acog2a)—(1—2a?)sin(2a)

408

Y=o 1- , (17

wherea=al/Xx and vy, is the decay rate of an isolated QD.
For simplicity, here and below, we do not take into account
the nonradiative decay of an isolated QD setting

From this, we find the induced field at the QD. Averaging =4/d12*/(37x°%), where x=c/w. Note thaty,—(2/3)y,

over the dipole orientation, from Eql), we obtain the re-
laxation rate

14 ® -
Y=+ %§|d12|2|mf0 k2e 2% (w,k,) "‘dk,. (15

for a<A.

The results of numerical computations from E#5) of
the metal-induced enhancement of relaxation fater silver
ata=2, 3, and 4 nm are shown in Fig. 2. The metal in such
a close proximity accelerates the relaxation in @porders
of magnitude Fluorescence of QD will, consequently, be

Obtaining Eq(15), we consider visible and infrared frequen- strongly quenched, its quantum yiejgd/y~10"1-10"3 for

cies wherde(w,k,)|>1. For the casa=vg/w~1 nm(the
numerical estimate is for silver arido=1 eV), we evaluate
Eq. (15) using expansioril13)

1 2
Y= 7r+%|d12|

1 Ime(w) 1 wug (
= — n
3 a%e(w)|? 6a%n2

(16)
wheree(w) is the macroscopic dielectric functidwithout

hw>0.5 eV.

In Fig. 3, we show relative decay rajé y, for silver as a
function of the relative distanca/x computed from Egs.
(15) and(17) along with the asymptotics from E(L6). The
long-dash line is the LRPA contributidithe second term in
brackets of Eq(16)] that falls off with distance aa™#; it is
in a good agreement with the full computation regbiold
line) for small distances d<0.05x). Thus, the LRPA
mechanism dominates the QD relaxation in such a close

the spatial dispersionHere, the first term in the brackets proximity to the surface. In contrast, the DMA ratthe
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10t e yields a very strong dependence on the emitter distance from
T 7 the metal surfaceyxa* for a<x. This is in sharp contrast
10° ¢ with the conventional DMA whereg/<a 3. Importantly, the
102 1 present LRPA theory not only predicts a qualitatively differ-

ent behavior, but also quantitatively predicts a much higher

10 7 a relaxation rate. Physically, this enhancement of relaxation is
+ ' 8 due to the fact that for an emitter close to the metal surface,
q10-! 1010 a significant number of metal electrons are within the Debye

screening length, affected by an unscreened field of the emit-
FIG. 3. Relaxation ratey of QD at a distancea from metal  ter. This unscreened interaction is very strong, leading to
surface relative toy, for isolated QD computed from Eggl5) and  efficient coupling to surface plasmons and subsequent dissi-
(17) by numerical integration fofiw=2 eV (bold line). The long-  pation due to Landau damping. The relaxation in LRPA is
dash line is the asymptotic given by the second term and short-dasitnhanced with respect to that in DMA by a factgr/a that
line by the first term in the brackets of EQL6). Note the double is very large for good metals and nanometric distareces
logarithmic scale. The present theory is directly applicable also to metal
nanoparticles whose curvature is large enougha andr
short-dash lingis always negligible despite its weaker fall =D aglzfm some cases in the experiment of Ref. 9. For
off as a~3. Note that these two asymptotics cross aat SPASER,” the enhanced couplu_']g O.f QD’s with metal that
~l. - however. at such larae distances the radiative ter follows from th(_e present theory |'mpI|es 'Iower threshold and
trs S 9 horter pulse time, which we will consider elsewhere. Our
actually dominates over both of them. The decay nates-

. I : . ) theory can be further developed to take into account the
cillates significantly(with the relative amplitude 0f=30%) 1 qification of the metal electron liquid properties close to
ata=x due to destructive/constructive interference of QDyhe gyrface. The DFT yields also the Friedel oscillations of

radiation with that of the QD mirror image. These oscilla- gjectron density? Such oscillations are found to be impor-

tions are in an agreement with Ref. 10. tant for optical responses of metallic nanoshells described by
To briefly summarize the main results, we have develope me-dependent local density approximation of ¥ These

LRPA theory to describe.a nanosize dipolar emitter placed intacts may be important for theory of QD's close to a metal
a nanometer-scale proximity of a metal surface and calcug, t5ce: we intend to consider them elsewhere.

lated its relaxation ratey [Egs. (15) and (16)]. We predict

strong enhancement of this relaxation by up to three orders This work was supported by the Chemical Sciences, Bio-
of magnitude(in comparison with radiative transition of an sciences, and Geosciences Division of the Office of Basic
isolated emitter The dominant mechanism is radiationlessEnergy Sciences, Office of Science, U.S. Department of En-
transfer of energy to the metal with excitation of surfaceergy, and Los Alamos LDRD Funds. We are grateful to W.
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