
Different regimes of Förster-type energy transfer between an epitaxial quantum well
and a proximal monolayer of semiconductor nanocrystals

Š. Kos,1,* M. Achermann,2 V. I. Klimov,2 and D. L. Smith1
1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

sReceived 24 May 2004; revised manuscript received 10 December 2004; published 20 May 2005d

We calculate the rate of nonradiative, Förster-type energy transfersETd from an excited epitaxial quantum
well sQWd to a proximal monolayer of semiconductor nanocrystal quantum dotssQDsd. Different electron-hole
configurations in the QW are considered as a function of temperature and excited electron-hole density. A
comparison of the theoretically determined ET rate and QW radiative recombination rate shows that, depend-
ing on the specific conditions, the ET rate is comparable to or even greater than the radiative recombination
rate. Such efficient Förster ET is promising for the implementation of ET-pumped, nanocrystal QD-based light
emitting devices.
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I. INTRODUCTION

Modern colloidal chemistry allows the fabrication of
semiconductor nanocrystal quantum dotssQDsd with nearly
atomic precision in a wide range of sizes and shapes.1–6

Nanocrystal QDs exhibit high photoluminescencesPLd quan-
tum yields3–5 and size-controlled emission spectra. Nano-
crystals can also be easily manipulated into various two-
dimensionals2Dd and three-dimensionals3Dd assemblies.7–9

All of these properties make nanocrystal QDs attractive
building blocks for various optical devices including color-
selectable light emitters. A major problem associated with
the realization of nanocrystal QD-based light emitters is that
the electrical injection of carriers into nanocrystals is com-
plicated by the presence of an insulating passivation layer.
All previous attempts to electrically contact nanocrystals
have utilized hybrid inorganic/organic composites compris-
ing conducting polymers.10–13 However, the performance of
these devices is severely limited by low carrier mobilities in
both nanocrystal and polymer components and poor polymer
stability with respect to photooxidation.

Recently, we have presented an alternative, “noncontact”
approach to injecting carriers into nanocrystal QDs via non-
radiative energy transfersETd from a proximal epitaxial
quantum well sQWd.14 The experiments revealed efficient
energy outflow from the QW, which was accompanied by a
complementary energy inflow into a dense monolayer of
nanocrystals assembled on top of the QW. The measured ET
rates were very fast allowing for the efficient pumping of
nanocrystal QDs.

In this paper we develop the theoretical framework to
model Förster-type ET from an epitaxial QW to a monolayer
of nanocrystal QDs. Our approach is conceptually similar to
the theory pioneered by Agranovich and co-workers15,16who
studied ET from a QW to an adjacent, infinitely thick layer
of organic molecules. In addition to considering a different
type of acceptorsssemiconductor nanocrystals versus organic
moleculesd, and a different “geometry” of the ET systemsET
to a single proximal monolayer versus ET to an infinitely
thick layerd, in the present work we calculate both ET and

radiative decay rates, which allows us to analyze the ET
efficiency as a function of temperature and excitation den-
sity. We consider the situations for which the electronic ex-
citations in the QW are present either in the form of free
electrons and holes or Coulombically bound electron-hole
pairs sexcitonsd. We also account for the effects of exciton
localization at defect states. Furthermore, we consider two
types of resonant QD acceptor states that can be treated ei-
ther as a dense quasicontinuumsapplicable to high-energy
QD states located well above the band edged or the narrow,
atomiclike resonancessapplicable to near-band-edge QD
statesd. Finally, we apply the developed theory to model our
experiments on energy transfer between the InGaN QW and
a proximal monolayer of CdSe nanocrystal QDs. We find a
remarkable agreement between our experimental observa-
tions and the results of the calculations performed for the
case of free electrons and holes in the QW. Independent stud-
ies of pump-intensity-dependent QW PL confirm that under
our experimental conditions the QW excitations can indeed
be well described in terms of unbound electrons and holes.

The paper is organized as follows. We introduce the gen-
eral formalism in Sec. II. Then, in Secs. III and IV, we study
coupling of QW excitations to high-energy states of the QDs
that form a dense, quasicontinuous spectrum. In Sec. III, we
investigate the excitation density and temperature regime, in
which the excited electron-hole pairs in the QW are bound
into noninteracting excitons described by classical statistics.
At high temperatures within this regime, the excitons are
mobile in the QW and the Förster rate dominates the radia-
tive decay rate. At lower temperatures, the localization of
excitons at defects decreases the efficiency of Förster ET. In
Sec. IV, we study the density and temperature regime, in
which the carriers form a 2D plasma in the QW. As the
carrier density increases for a given temperature, the plasma
experiences a transition from the nondegenerate to the de-
generate regime. In this case, we find that the Förster rate is
always greater than the radiative rate and both rates reach
maximum around the degeneracy temperature for the holes.

In Sec. V, we examine the case in which QW excitations
couple to discrete, low-lying QD states with linewidths that
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are smaller than the characteristic energy of the motion of
charge carriers in the QW. We find that the ET rate decays
exponentially with increasing QW-QD distance in contrast to
the power law found for the situation in which the ET occurs
into the quasicontinuum of high-energy QD states.

Finally, in Sec. VI, we describe experimental results ob-
tained for the ET structure composed of an InGaN QW and
CdSe QDs. The analysis of these results indicates that the
nondegenerate free carrier case best describes the structure
studied experimentally. We compare the ET rates, radiative
decay rates, and ET efficiencies obtained from the theory
with those measured experimentally and find good agree-
ment.

A summary of our results is presented in Sec. VII.

II. GENERAL FRAMEWORK

The geometry of the studied structure is shown in Fig. 1.
We consider an epitaxial semiconductor heterostructure,
where a QW has been grown between a thick bottom and a
thin top barrier layer. On top of the QW structure a mono-
layer of nanocrystal QDs has been assembled. The derived
formulas are not material specific; the numerical values of
the ET rates are computed in the subsequent sections for a
combination of an InGaN QW and CdSe nanocrystal QDs.
The distanceR between the centers of the QD and the QW is
determined by the QW and the top barrier widths, the length
of the ligand molecules, which surround the QD, and the QD
size. We shall simplify the calculations by assuming that the
size of the QDs and the width of the QW are small compared

to R. In the experiments described in Ref. 14, these quantities
are of the same order of magnitude asR. However, taking
into account the actual dimensions of the QDs and the QW
changes the results by a few percent onlysas verified by
exact calculations assuming a non-zero width of the QWd.

The Förster process transfers an electron-hole excitation
from the QW to the QD via the electrostatic interaction

HI
F =

e2

e
E d3rDd3rWo

a,b

ca
†sr Ddcasr Ddcb

†sr Wdcbsr Wd
ur D − r Wu

,

s1d

wheree is the average of the high frequency dielectric con-
stants of the QW and air. The initial and final states partici-
pating in ET are

uil = uexWluGSDl s2d

and

ufl = uGSWluexDl, s3d

where uGSl and uexl are the ground state and the excitated
state, respectivelyssubscripts “W” and “D” denote QW and
QD, respectivelyd. The matrix elements of the density opera-
tors in the numerator of Eq.s1d are zero for our initial and
final states, therefore, we use the dipolar expansion of the
matrix element. The conduction and valence bands haves
andp symmetry, respectively, so the dipolar matrix elements
are nonzero. Thus, we can use the dipolar approximation for
the transition matrix element for a single dot

kf uHI
Fuil =

e2

e
E d2rW

dD
* sr Dd · dWsr Wd − 3FdD

* sr Dd ·
r D − r W

ur D − r WuGFdWsr Wd ·
r D − r W

ur D − r WuG
ur D − r Wu3

, s4d

with

dsr d = Csr ,r dkuvur uucl, s5d

where uc and uv are the periodic functions that enter the
Bloch wave functions for the conduction and valence bands,
respectively, and the envelope wave functionC is assumed
to vary on a much larger length scale than the lattice con-
stant. To calculate the transition rate from the Fermi Golden
Rule, we square the modulus of this matrix element, multiply
by the energy-conserving delta function, sum over the final
and initial statessweighted with a thermal distribution func-
tiond, and finally multiply by the number of the dots.

We calculate the radiative transition rate in a QW by using
the Fermi Golden Rule with the interaction Hamiltonian

HI
r = −

1

c
E d3r j sr d · Asr d. s6d

The transition matrix element now is

kk,luHI
ruexWl ; −

1

c
E d3rkGSWuj sr duexWl · kk,luAsr du0l,

s7d

where uk ,ll is a one-photon state with wave vectork and
polarizationl, and u0l is the photon vacuum. Here, we con-
sider only spontaneous emission; stimulated emission may
be important for free carriers below the degeneracy tempera-
ture discussed in Sec. IV. Using the canonical commutation
relations between position and momentum operators, we ob-
tain

kGSWuj sr duexWl = − iEGedWsr d, s8d

where we have approximated the exciton energy by the band
gap energyEG. Again, to determine the radiative transition
rate, we need to multiply the square of the modulus of this
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transition matrix element by the energy-conserving delta
function and sum over all the one-photon states.

III. EXCITONS IN THE QW

The conduction band is twofold degenerate as a result of
the two spin projections; the orbital part of both bands is the
same, and hass symmetry. The valence band is fourfold
degenerate in the center of the Brillouin zone, but the spatial
confinement in the direction perpendicular to the QW splits
the degeneracy. We will only take into account the low-
energy, heavy-hole band.

First we consider the case of a free exciton. For the enve-
lope function, we make a separation of variables into the
center-of-mass motion described by a plane wave and the
relative motion assuming the exciton in a hydrogen 1s state
with Bohr radiusaB. This results in a dipolar matrix element

dWsr d = Csr ,r dkuvur uucl =
eiK·r

Îp

2
AaB

2

dW

Î2
sx̂ ± iŷd, s9d

in which A is the QW area,dW is the QW dipole moment,
andK is the center-of-mass momentum.

In this case, the matrix element of the Förster transition is

kf uHI
Fuil = −

e2

e
Î 2

pAaB
2 sdD

* · = ddWs]x ± i]ydfKsRd,

s10d

with

fKsRd ; E d2r
eiK·r

ur − Ru
= 2p

eiK ·r−Kz

K
, s11d

wherer andz are the in-plane and out-of-plane components
of the vectorR, respectively. The dipolar matrix element of
the dot,dD, has a particular value and a random orientation.
Squaring the absolute value of the Förster matrix element,
averaging over the random direction ofdD, summing over
the high-energy QD excitons with a smoothly varying den-
sity of statesNDsEd, and summing over the QDs, we obtain
the Förster transfer ratesthe inverse of the ET time,tFd,

1

tFsKd
=

8p

3
Se2

e
D2

udDu2udWu2NDsEGd
nD

aB
2 K2e−2KR, s12d

where nD is the areal density of the QDs andR is the
QW-QD separation in thez direction.

To model excitons in a real QW, we have to consider
width fluctuations, alloy disorder or impurities that can lo-
calize the exciton. If the length scale of such a trap is much
larger thanaB, the relative motion of the exciton will remain
unchanged, but the center-of-mass wave function will now
be localized instead of being a plane wave. We assume that
all the traps in the QW localize the excitons into states with
a characteristic binding energyET and localization lengthj.
An analytical evaluation of the matrix elements is possible
only for special exciton envelope functions, such as a modi-
fied Lorentzian

Cjsrd =Î 2

p

j−1

F1 +S r

j
D2G3/2, s13d

leading to an ET rate of the bound excitons of

1

tF,loc
= 4pSe2

e
D2

udDu2udWu2NDsEGdnDS j

aB
D2 1

sj + Rd4 .

s14d

For a different center-of-mass wave function, the functional
dependence will be somewhat different, but the asymptotic
behavior in the two limitsj@R andj!R will be the same,
hence, this is a suitable interpolation between the two limits.

We obtain the total Förster transfer rate by averagings12d
and s14d using the Boltzmann distribution

FIG. 1. sad An example of a hybrid QW/QD structure that can be
used for “noncontact” pumping of nanocrystals via nonradiative ET.
The structure consists of an InGaN QW sandwiched between GaN
barriers. A monolayer of CdSe/ZnS core/shell nanocrystals capped
with organic molecules is assembled on the surface of the thin top
barrier. The structure is driven electrically using metal contacts at-
tached to the barrier layers.sbd Carrier relaxation and ET processes
in the hybrid QW/QD structure. The QW-to-QD ET competes with
recombination processes in the QW. High-energy excitations cre-
ated in the nanocrystals through ET rapidly relax to the nanocrystal
band edge, which prevents backtransfer. The relaxed excitations
recombine, producing emission with the color determined by the
QD size.
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1

tF
=

nTe
−ET

T
1

tF,loc
+E d2K

s2pd2e
−K2

2MT
1

tFsKd

nTe
−ET

T +E d2K

s2pd2e
−K2

2MT

= 4pSe2

e
D2

udDu2udWu2NDsEGd
nD

aB
2

3

nTe
−ET

T
j2

sj + Rd4 +
MT

2p

4

3R2 fs2MTR2d

nTe
−ET

T +
MT

2p

, s15d

wherenT is the areal density of the traps,M ;me+mh is the
mass of the exciton, and

fsxd ;
1

x
E

0

`

dkk3e−2k−k2

x

=
x

4
f2s1 + xd

− exÎpxs3 + 2xderfcsÎxdg. s16d

The performance of a device that relies on ET-pumping of
colloidal QDs from a QW is determined by the ET efficiency
shd, which is a function of both the ET rate and the total rate
of all recombination processes in the QWstr

−1d :h
=tF

−1/ stF
−1+tr

−1d. An ultimate limit on the lifetime of QW
excitations is imposed by the radiative decay, which deter-
mines an upper limit of the ET efficiency. We calculate the
radiative recombination rate froms7d. The matrix element of
the one-photon transition is

kk,luAsr du0l =Î2pc

k
el

* skde−ik·r . s17d

The integral ins7d will set the in-plane component ofk equal
to K and give the radiative rate of a free exciton17

1

trsKd
=

1

p
sedwd2SEG

c
D2 1

aB
2

1

ÎSEG

c
D2

− K2

3S2 −
c2K2

EG
2 DusEG − cKd. s18d

For a localized exciton, we find

1

tr,loc
=

32

3p
sedWd2SEG

c
D3 j2

aB
2 , s19d

resulting in the total recombination ratesobtained by averag-
ing with respect to the Boltzmann distributiond

1

tr
=

4

3p
sedWd2SEG

c
D3 1

aB
2

1

2p
+ nTe

−ET

T 8j2

MT

2p
+ nTe

−ET

T

. s20d

In Fig. 2, we plot the Försters15d and the radiatives20d
transition rates, along with the efficiency of the Förster trans-
fer as a function of temperature. We use the following physi-
cal parameters from the experiment in Ref. 14, where a
monolayer of CdSe nanocrystal QDs with a 19 Å radius has
been deposited on an InGaN QW with a 30 Å width:dD
=5.2 Å,9 dW=2.9 Å,18 NDsEGd=17.3 eV−1 sdetermined from
the QD absorption spectrad, EG=3.1 eV,nD=2
31012 cm−2, aB=27.8 Å, e=3.6 fthe average of the high
frequency dielectric constant of GaNseW,`=6.2d and air
seair =1dg, M =me+mh=0.2m0+0.8m0, R=81 Å. In addition,
we assumej=30 Å sthe lower bound forj is aBd, nT
=1011 cm−2, andET=−0.005 eV insad andET=−0.02 eV in
sbd. For the static dielectric constant of GaNeW,0=8.9, we
obtain the exciton binding energy of 0.0528 eV, which cor-

FIG. 2. The Försterssolid lined
and radiativesdashed lined transi-
tion rates calculated for QW
excitons for j=30 Å and sad
nT=1011 cm−2 and ET=−0.005
eV, sbd nT=1011 cm−2 and ET

=−0.02 eV, scd nT=1012 cm−2

and ET=−0.005 eV, sdd nT

=1012 cm−2 and ET=−0.02 eV.
The dashed-dotted line is the effi-
ciency of the Förster transfer.
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responds to 675 K. We plot the radiative and ET rates and the
ET efficiency up to room temperature, which is roughly half
of the latter value.

At high temperaturesT@1/2MR2.5 K, both 1/tF and
1/tr behave as 1/T with a bigger prefactor for 1/tF. As the
temperature decreases, both rates increase, but the increase
of 1/tF becomes slower than 1/T, and eventually the two
rates cross and 1/tF becomes smaller than 1/tr. The ET
efficiency, therefore, increases as the temperature increases
up to the crossing point and levels off at temperatures above
this point; the individual rates, however, decrease as the tem-
perature is increased further. Thus, the optimum temperature
for the ET is around the crossing point between 1/tF and
1/tr, which occurs at temperature on the order of 1/2MR2 if
the effect of the exciton localization is negligible. The cross-
ing point shifts to higher temperatures and the ET efficiency
is decreased in the case of stronger exciton localization. Lo-
calized excitons dominate the rates in the limitT→0, thus
making the rates at the crossing point smaller. Indeed,tr,loc

−1

grows relative totF,loc
−1 with increasing localization lengthj,

and the importance of the localized term grows both withnT
fcompare Figs. 2sad and 2sbd with Figs. 2scd and 2sdd, respec-
tivelyg and with uETu fcompare Figs. 2sad and 2scd with Figs.
2sbd and 2sdd, respectivelyg. We note that the order of mag-
nitude of the transition rates does not change as we vary the
localization parametersscompare different panels in Fig. 2d.

IV. FREE CARRIERS IN THE QW

When the density of electrons or holesneh
19 exceeds 1/aB

2

sso that the kinetic energy dominates the Coulomb interac-
tiond, or the temperature is higher than the exciton binding
energy, then the charge carriers do not form excitons but
rather stay unbound. We assume that the energies of the elec-
trons and holes are much larger thanET, so that we can treat
the charge carriers as free particles described by plane waves

Csr ,r d =
eiK·r

A
. s21d

The use of these wave functions modifies the normalization
in s12d. In the classicalsnondegenerated case, that isneh
,2meT/2p ,2mhT/2p, we can express the ET ratesafter av-
eraging over the thermal distribution of free carriersd as

1

tF,class
=

8p2

3
Se2

e
D2

udDu2udWu2NDsEGdnDneh
1

R2 fs2MTR2d.

s22d

The latter expression indicates that the ET rate in the free-
carrier case is proportional toneh.

For neh.2meT/2p ,2mhT/2p, both the electrons and the
holes form degenerate Fermi gases and the total Förster rate
will be

1

tF,deg
= o

ke,kh

Î2pneh 1

tFsKd
. s23d

We convert the sum over momentum into an integral that can
be calculated explicitly, holdingke+kh=K . The Förster rate

per electron-holese-hd pair in the degenerate regime is

1

tF,deg
=

2

3
Se2

e
D2

udDu2udWu2NDsEDdnD
1

R4gs2Î2pnwhR
2d,

s24d

where

gsxd ; x4E
0

1

dkSp

2
− arcsink − kÎ1 − k2Dk3e−2kx.

s25d

The corresponding recombination rates will be obtained
from the decay rate calculated for a singlee-h pair with the
center-of-mass momentumK , which is the same ass18d ex-
cept thataB

2 in the denominator is replaced with the total QW
areaA.

For the classical casesneh,2meT/2p ,2mhT/2pd, we ob-
tain

1

tr,class
=

2

3
sedwd2SEG

c
D3 neh

MT
, s26d

whereas for the degenerate case,neh.2meT/2p ,2mhT/2p,
the radiative recombination rate is

1

tr,deg
. o

ke,kh

Î2pneh 1

tr,freesKd
=

1

6p
sedwd2SEG

c
D3

. s27d

Finally, if mh@me, we have an intermediate regime

2meT/2p , neh, 2mhT/2p, s28d

that is, the electrons are degenerate and the holes are classi-
cal. We can obtain the Förster and radiative rates from for-
mulass22d and s26d, respectively, if we replaceM with

me
EFe

T
+ mh, s29d

whereEFe=2pneh/2me. Since

me
EFe

T
= mh

2pneh

2mhT
, mh s30d

in the intermediate regime, the Förster and radiative rates
behave as in the classical regime with the total mass replaced
by the mass of the hole.

In Fig. 3, we show the Förster and the radiative transition
rates, in the classical/intermediate regime as obtained from
formulass22d ands26d, respectively, forneh=1012 cm−2 as a
function of temperaturesad and forT=300 K as a function of
neh sbd. The dashed-dotted line is the efficiency of the Förster
transfer. The straight-line segments indicate the asymptotic
degenerate values given by formulass24d and s27d in the
limit T→0 sad s0.0749 ns−1 for the Förster rate and
0.0379 ns−1 for the radiative rate with efficiency 0.66d, and
in the limit neh→` sbd s0.175 ns−1 for the Förster rate and
0.0379 ns−1 for the radiative rate with efficiency 0.82d. Inde-
pendent of temperature and carrier density, the energy trans-
fer rate is always higher than the radiative transition rate in
the QW. In the classical regime both rates scale approxi-
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mately as 1/T and are linear inneh, whereas in the degener-
ate case 1/tF and 1/tr are only weakly dependent on tem-
perature and carrier density. The crossover between the
degenerate and the intermediate regime is very pronounced
and occurs at 34.7 Ksad and 8.631012 cm−2 sbd. The cross-
over between the intermediate and classical regime is at tem-
perature 2pneh/2me=139 K sad and at density 2meT/2p
=2.231012 cm−2 sbd, and is hardly noticeable. The effi-
ciency is high and nearly constant across the different re-
gimes, so the optimal regime is at the maximum of the ET
rate, that is, around the hole degeneracy point that occurs at
neh=2mhT/2p.

V. ENERGY TRANSFER INTO DISCRETE QD STATES

Throughout the paper, we assumed that the QD density of
states was constant on the energy scale corresponding to
variations of the transition matrix element of the free QW
excitons. Experimentally, this situation occurs if the band
gap of the QDs is much smaller than the band gap of the
QW, so that the final states participating in the Förster trans-
fer are in the quasicontinuum of high-energy QD excitations.
If the band gaps of the QDs and the QW are close to each
other, then the transfer excites discrete low-energy QD exci-
tons. For the case of dispersionless localized QW excitons
this will only change numerical prefactors in the Förster tran-
sition rate. However, as we show below, in the case of free
QW excitons or free carriers, we obtain a different behavior
for the ET rate if the width of the QD transition is small
compared to the scale, on which significant variations of the
ET transition matrix element occur.

If the width of the QD exciton is smaller than 1/2MR2,
we can approximate the exciton line by a delta function and
obtain

1

tF,dsKd
, Se2

e
D2

udDu2udWu2
nD

aB
2 K2e−2KRdS K2

2M
− EDD ,

s31d

where ED is the energy of the QD exciton measured with
respect to the bottom of the QW exciton band. The use of the
Fermi Golden Rule is justified if the rate 1/tF,dsKd is smaller
than the dephasing rate of the QD excitonsdetermined by its
linewidthd. The latter condition is usually satisfied in real
QW/nanocrystal QD systems, because the ET rate is in the
submicroelectron-volt range, while the widths of nanocrystal
transitions even at low temperatures are in the
submillielectron-volt-to-millielectron-volt range.20,21

The thermal averaging will lead to the replacement

ND

R2 sEGdfs2MTR2d → MED

T
e−2RÎ2MED−

ED

T . s32d

We see that at largeT, the dependence of the rate is still
~1/T as in the case of high-energy quasicontinuous QD ex-
citations. However, the QW-QD distance dependence
changes completely. While the ET rates calculated in the
Secs. III and IV follow approximately theR−4 dependence
ffs2MTR2d~R−2 for large Rg, the ET rates in the case of
transfer into discrete QD states depend exponentially on the
QW-QD separation. The rate of the exponential distance de-
cay can be controlled by the QW-QD energy offsetED. In the
resonant case,ED is nonzero but is determined by the inho-
mogeneous broadening of the QD transition energy. Typical
QDs are synthesized with a narrow size dispersion of ap-
proximately 7%, which translates into an energy variation
DE of ,50 meV around a center energy of 2.2 eV. Assuming
that in the “quasiresonant” caseED=DE, we find that the ET
rate decreases on a very short length scale of,5 Å.

FIG. 3. The Försterssolid lined and radiativesdashed lined transition rates for QW classical free carriers, along with the ET efficiency
sdashed-dotted lined. sad The calculations are shown forneh=1012 cm−2 as a function ofT above the degeneracy temperature 34.7 K.sbd The
calculations are shown forT=300 K as a function ofneh below the degeneracy density 8.631012 cm−2. The straight-line segments indicate
the asymptotic degenerate values in the limitT→0 for the Försters0.0749 ns−1d and radiatives0.0379 ns−1d rates with efficiency 0.66sad,
and in the limitneh→` for the Försters0.175 ns−1d and radiatives0.0379 ns−1d rates with efficiency 0.82sbd.
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VI. EXPERIMENT: ENERGY TRANSFER BETWEEN AN
InGaN QW AND CdSe QDs

In this section, we compare our theoretical calculations
with results of the measurements that we perform for the
hybrid structure schematically shown in Fig. 1. In our experi-
mental work we use optical excitationssee belowd, therefore,
the QW in our device does not have metal contacts. The
structure consists of a close-packed monolayer of CdSe/ZnS
core/shell nanocrystal QDs deposited by the Langmuir-
Blodgett technique on an InGaN/GaN heterostructure. The
30 Å wide InGaN quantum well is capped with a thin, 30 Å
thickness GaN top barrier layer. We excite the hybrid
QW/QD structure at 266 nm with 100 fs laser pulses from a
frequency-tripled, amplified Ti:sapphire laser and measure
the dynamics of the QW emission at 400 nm using a time-
correlated single photon counting system.14 First, we mea-
sure the PL dynamics from an isolated QW without QDs in
its proximity. From the quadratic carrier density dependence
of the PL amplitude at zero time delay we conclude that the
QW excitation can be described by nondegenerate free car-
riers. Despite the large “nominal” exciton binding energy
s675 Kd, charge carriers in InGaN QWs do not form excitons
at room temperature because of strong piezoelectric fields.22

For the free carrier case we would expect a PL decay rate
that depends linearly on the carrier densityfEq. s26dg. How-
ever, we find a nonvanishing decay rate of 1 ns−1 at low
carrier densities that we attribute to nonradiative recombina-
tion as a result of carrier trapping at defectsstypically ob-
served for InGaN QWs at room temperatured. After subtract-
ing this nonradiative contribution from the decay dynamics,
we obtain the radiative recombination ratesFig. 4d that
shows the expected linear carrier density dependence. The
experimental and calculated radiative rates agree within a
factor of 2. Next, we compare the QW PL decay dynamics of

the isolated QWsdecay rate 1/tw/o QDsd with the dynamics
measured for the hybrid QW/QD structuresdecay rate
1/twith QDsd. We find an accelarated PL decay in the hybrid
structure as a result of ET from the QW to the QDs. The ET
rates1/tF=1/tw/o QDs−1/twith QDsd is plotted in Fig. 4. Both
the linear carrier density dependence and the absolute values
of the measured ET rate are in agreement with Eq.s22d and
Fig. 3, respectively. The ET efficiency of 57%ssee Ref. 23d
that we calculated from the measured ET and radiative re-
combination rate is close to the theoretical value of 80%.

VII. SUMMARY AND CONCLUSIONS

We have studied the rate of nonradiative Förster energy
transfer between a quantum well and a proximal layer of
nanocrystal QDs. We considered both the low-density/low-
temperature regime, in which the excitations are bound ex-
citons either free or localizedfEqs. s15d and s20dg and the
high-density/high-temperature regime in which the electrons
and holes form a plasma of free charge carriers, in the non-
degeneratefEqs. s22d and s26dg, degeneratefEqs. s24d and
s27dg, or intermediate degenerate/nondegeneratefEq. s28dg
regimes. For the numerical estimations, we used physical
parameters from the experiments reported in Ref. 14. For the
case of QW excitons, we find that the energy transfer into the
QDs is optimal if the contribution from the localized exci-
tons is negligible and if the temperature is on the order of the
exciton kinetic energy with momentum equal to the inverse
of the distance between the quantum well and the layer of the
quantum dots. For the case of free carriers in the quantum
well, we find that the energy transfer is optimal around the
hole degeneracy temperature. In addition, we considered ET
to discrete QD states. For this configuration, we found that
the ET rates decay exponentially with increasing QW-QD
separation. The characteristic distance turned out to be very
small, on the order of a few angstroms. Finally, we validated
the theoretical model by comparing our calculations with
experimental results obtained for a hybrid InGaN QW/CdSe
QD device. We measured ET rates, radiative recombination
rates, and ET efficiencies and found a good agreement with
our theoretical predictions for the case of free carriers in the
QW. Independently we confirm that under our experimental
conditions QW excitations are indeed present in the form of
free carriers. In conclusion, our results indicate that with a
careful design of the systemsgeometrical and electronic pa-
rametersd, the Förster transfer can be used as an efficient
“noncontact” pumping mechanism of nanocrystal QD-based
light emitting devices.
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FIG. 4. Experimental results: Försterssquaresd and radiative re-
combination ratesscrossesd as a function of excited carrier density
sthe solid and dashed lines are guides to the eyed. The dash-dotted
line is the ET efficiencysh=57%d.

DIFFERENT REGIMES OF FÖRSTER-TYPE ENERGY… PHYSICAL REVIEW B 71, 205309s2005d

205309-7



*Present address: Theory of Condensed Matter Group, Cavendish
Laboratory, Cambridge, CB3 0HE, United Kingdom.

1A. P. Alivisatos, Science271, 933 s1996d.
2C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem.

Soc. 115, 8706s1993d.
3M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem.100, 468

s1996d.
4B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine,

H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J.
Phys. Chem. B101, 9463s1997d.

5L. Qu and X. Peng, J. Am. Chem. Soc.124, 2049s2002d.
6Semiconductor and Metal Nanocrystals: Synthesis and Electronic

and Optical Properties, edited by V. I. KlimovsMarcel Dekker,
New York, 2003d.

7C. B. Murray, C. B. Kagan, and M. G. Bawendi, Science270,
1335 s1995d.

8M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov,
J. Phys. Chem. B107, 13782s2003d.

9S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov,
Phys. Rev. Lett.89, 186802s2002d.

10V. Colvin, M. Schlamp, and A. Alivisatos, NaturesLondond 370,
354 s1994d.

11B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner,
Appl. Phys. Lett.66, 1316s1995d.

12N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin,

Science295, 1506s2002d.
13S. Coe, Wing-Keung Woo, M. Bawendi, and V. Bulovic, Nature

sLondond 420, 800 s2002d.
14M. Achermann, M. A. Petruska, Š. Kos, D. L. Smith, D. D.

Koleske, and V. I. Klimov, NaturesLondond 429, 642 s2004d.
15V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani,

J. Phys.: Condens. Matter10, 9369s1998d.
16D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich,

Eur. Phys. J. B8, 353 s1999d.
17For a review of optical processes in quantum wells, see, e.g., E.

Runge, Solid State Phys.57, 149 s2002d.
18P. Lawaetz, Phys. Rev. B4, 3460s1971d.
19We assume charge neutrality, that isne=nh;neh.
20S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev.

Lett. 77, 3873s1996d.
21H. Htoon, P. J. Cox, and V. I. Klimov, Phys. Rev. Lett.93,

187402s2004d.
22O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M.

Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak,
B. Schaff, and L. F. Eastman, J. Phys.: Condens. Matter14,
3399 s2002d.

23To compare measured and calculated ET efficiencies we only
consider radiative recombination and disregard nonradiative
decay processes.

KOS et al. PHYSICAL REVIEW B 71, 205309s2005d

205309-8


